

 Swinburne University of Technology | CRICOS Provider 00111D | swinburne.edu.au

Swinburne Research Bank
http://researchbank.swinburne.edu.au

Yu, J., et al. (2006). Pattern based property specification and verification for

service composition.

Originally published in Proceedings of the 7th International Conference on Web
Information Systems Engineering (WISE 2006), Wuhan, China, 23–26 October

2006.
Lecture notes in computer science (Vol. 4255, pp. 156–168). Berlin: Springer.

 Available from: http://dx.doi.org/10.1007/11912873_18

Copyright © Springer-Verlag Berlin Heidelberg 2006.

This is the author’s version of the work, posted here with the permission of the
publisher for your personal use. No further distribution is permitted. You may also be
able to access the published version from your library. The definitive version is
available at http://www.springerlink.com/.

http://dx.doi.org/10.1007/11912873_18
http://www.springerlink.com/

Pattern Based Property Specification and Verification

for Service Composition

Jian Yu1, 2, Tan Phan Manh
1
, Jun Han

1
, Yan Jin1, Yanbo Han2, and Jianwu Wang2

1 Faculty of ICT, Swinburne University of Technology, 3122 Hawthorn, Australia

{jyu, phan_tan, jhan, yjin}@ict.swin.edu.au
2 Grid and Service Computing Research Center, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, China 100080

{yujian, yhan, wjw}@software.ict.ac.cn

Abstract. Service composition is becoming the dominant paradigm for

developing Web service applications. It is important to ensure that a service

composition complies with the requirements for the application. A rigorous

compliance checking approach usually needs the requirements being specified

in property specification formalisms such as temporal logics, which are difficult

for ordinary software practitioners to comprehend. In this paper, we propose a

property pattern based specification language, named PROPOLS, and use it to

verify BPEL service composition schemas. PROPOLS is easy to understand

and use, yet is formally based. It builds on Dwyer et al.’s property pattern

system and extends it with the logical composition of patterns to accommodate

the specification of complex requirements. PROPOLS is encoded in an

ontology language, OWL, to facilitate the sharing and reuse of domain

knowledge. A Finite State Automata based framework for verifying BPEL

schemas against PROPOLS properties is also discussed.

1 Introduction

Web service composition is emerging as a promising technology for the effective

integration of applications across globally distributed organizations [1, 2]. When

encapsulating modular business functions as standard Web services, cross-

organizational business processes can be built with a service composition language

like BPEL [3] or BPML [4].

It is important to ensure the behavioral compliance between a service composition

application and the requirements. Unexpected application behaviors may not only

lead to mission failure, but also may bring negative impact on all the participants of

this process. Model checking [5] is a formal approach to software behavioral

compliance checking. In this approach, a software application is abstracted as a

formal model like Labeled Transition Systems (LTS), Finite State Automata (FSA),

Petri nets, or process algebra. The behavioral requirements are specified as properties

in formalisms such as Linear Temporal Logic (LTL), Computation Tree Logic (CTL),

or Quantified Regular Expressions (QRE). Then the formal model can be verified

against the specified requirements/properties through exhaustive state space

exploration. A serious problem, however, prevents the wide adoption of this approach.

That is, the formal properties are surprisingly difficult to write for practitioners, who

usually don’t have solid mathematical backgrounds [6, 7].

In this paper, we present a lightweight specification language called PROPOLS

(Property Specification Pattern Ontology Language for Service Composition), and an

associated approach to the verification of BPEL schemas. PROPOLS is an OWL-

based high-level pattern language for specifying the behavioral properties of service

composition applications. PROPOLS is based on Dwyer et al.’s property patterns [6],

which are high-level abstractions of frequently used temporal logic formulae. The

property patterns enable people who are not experts in temporal logics to read and

write formal specifications with ease and thus make model checking tools more

accessible to common software practitioners [8]. Although it is claimed in [6] that

patterns can be nested, no further work has been done on how to define composite

patterns and what are their semantics. PROPOLS refines/extends the original pattern

system in [6] by introducing the logical composition of patterns. This mechanism

enables the definition of complex requirements in terms of property patterns, which is

previously difficult or even impossible. PROPOLS uses the Web Ontology Language

(OWL) as its base language. This makes PROPOLS properties sharable and reusable

within/across application domains.

In addition to the PROPOLS language, we present a verification framework for

checking the compliance of BPEL schemas against PROPOLS properties. The key

techniques used include representing the semantics of PROPOLS properties as FSAs,

representing the semantics of a BPEL schema as a LTS/FSA using Foster’s

BPEL2LTS tool [9], and checking the language inclusion between these two FSAs.

The verification approach is illustrated using a non-trivial example.

This paper is structured as follows. In the next section, a motivating example

scenario is presented. Section 3 gives a brief introduction to the original property

specification patterns. Section 4 presents PROPOLS, including its syntax and

semantics. Section 5 introduces the BPEL verification framework and illustrates the

verification approach based on the example scenario. Finally, we discuss the related

work in section 6 and conclude the paper in section 7.

2 A Motivating Scenario

Let’s assume a computer manufacturing company AdvantWise is to provide an online

purchasing service. The key requirements to this service are sketched as follows:

1) Customers can place purchase orders online. Any order should be checked before

being processed. For an invalid order, the customer will get a rejection

notification. For a valid one, the customer will get a confirmation.

2) The transactions between customers and AdvantWise follow a hard credit rule.

That is, on the one hand, the customer pays to AdvantWise only when she has

received the ordered products. On the other hand, AdvantWise processes the

order only when it is confirmed that the customer will pay if the order is fulfilled.

For this to be possible, a third party, bank, is introduced. To let AdvantWise start

processing order, the customer must deposit the payment to the bank first. Then

the bank will notify AdvantWise that the payment for the order has been already

kept in the bank. Anytime when the order is canceled, the payment will be

refunded by the bank. If the order is fulfilled, the bank ensures that the payment

is transferred to AdvantWise.

3) To fulfill an order, AdvantWise first checks its inventory. If there are enough

products in the inventory, the products of the ordered quantity are packaged for

shipping. If not, AdvantWise will initiate an emergency production schedule.

Clearly, the above-stated requirements express certain business constraints that the

system implementation must follow. On the one hand, it is not easy to translate the

embedded behavioral constraints into temporal logics in a straightforward manner. On

the other hand, Dwyler’s patterns are not expressive enough to state all the constraints,

for example, the mutual exclusion between rejection and confirmation. After

introducing PROPOLS in section 4, we will formulate all these requirements in

PROPOLS, against which the BPEL service composition being designed in section 5

will be checked.

3 Property Specification Patterns

Property specification patterns were first proposed by Dwyer et al in [6]. These

patterns include a set of commonly occurring high-level specification abstractions for

formalisms like LTL, CTL or QRE. They enable people who are not experts in such

formalisms to read and write formal specifications. According to [10], 92% of 555

property specifications collected from different sources matched one of the patterns.

A pattern property specification consists of a pattern and a scope. The pattern

specifies what must occur and the scope specifies when the pattern must hold.

Patterns are classified into occurrence patterns and order patterns. We briefly

describe the meaning of the important patterns below (the symbol P or Q represents a

given state/event). Details of these patterns can be found in [11].

� Absence: P does not occur within a scope.

� Universality: P occurs throughout a scope.

� Existence: P must occur within a scope.

� Bounded Existence: P must occur at least/exactly/at most k times within a scope.

� Precedence: P must always be preceded by Q within a scope.

� Response: P must always be followed by Q within a scope.

A scope defines a starting and an ending state/event for a pattern. There are five

basic kinds of scopes:

� Globally: the pattern must hold during the entire system execution.

� Before: the pattern must hold up to the first occurrence of a given P.

� After: the pattern must hold after the first occurrence of a given P.

� Between…And: the pattern must hold from an occurrence of a given P to an

occurrence of a given Q.

� After…Until: the same as "between…and", but the pattern must hold even if Q

never occurs.

The semantics of pattern properties may be given in LTL, CTL, QRE, or FSA [6,

7, 12, 13]. Fig. 1 illustrates the FSA semantics by three pattern properties. There, the

symbol ‘O’ denotes any other state/event than P and Q. Fig. 1(a) indicates that, before

P occurs, an occurrence of Q is not accepted by the FSA. Fig. 1(b) states that if Q has

occurred, an occurrence of P is necessary to drive the FSA to a final state. Finally, Fig.

1(c) says that only the occurrence of P can make the FSA reach a final state.

Fig. 1. FSA Semantics of Example Pattern Properties

4 The PROPOLS Language

In this section, we first illustrate the structure and main components of the PROPOLS

language. We then explain the syntax and semantics of the composite pattern, which

are refinements/extensions to the original pattern system. A composite pattern is built

by connecting pattern properties using logic operators. The main benefit of the

composite pattern mechanism lies in that it enables the specification of complex

requirements. Finally, the PROPOLS properties for the example scenario are given.

4.1 Language Structure

We designed PROPOLS as an ontology language for two purposes: First, ontology

can be used to define standard terminology for the pattern system. Second,

practitioners like business experts and system analysts can use concepts from existing

domain ontologies to define pattern properties at a high level of abstraction. The

benefits include: The pattern properties themselves are also become part of the shared

formal domain knowledge, so they can be reused in a wide scope, and off-the-shelf

semantic Web techniques can be used to map properties to related Web services

automatically. At present, OWL is the most widely used Web ontology language. So

we choose OWL as the base language of PROPOLS.

Fig. 2 shows a graphical overview of the PROPOLS ontology. It is generated from

Ontoviz [14], an ontology visualization plug-in for an OWL editor tool Protégé. Its

major elements are explained below.

OrderPattern: This class defines the set of order patterns we discussed in section 3.

We use a more natural name LeadsTo to replace the original name RespondsTo. Here,

P LeadsTo Q is the same as Q RespondsTo P.

OccurrencePattern: This class defines the set of occurrence patterns we discussed in

section 3.

Scope: As discussed in section 3, every elementary pattern will be associated with a

scope coming from globally, before, after, between…and or after…until.

(a) P precedes Q globally (b) P responds to Q globally (c) P exists globally

Fig. 2. PROPOLS Ontology

Operation: This is the class for service operations. An operation is considered as an

event in the pattern properties. It has a provider property linking to its provider and a

conceptReference property linking to the corresponding concept in some ontology.

Later, the conceptReference can be used to semantically map an event in pattern

properties to a Web service operation and vice versa.

Expression, Unary and Binary: Expression is a general class for patterns and

operations. For the succinctness of the PROPOLS ontology, all the patterns and

scopes are the subclasses of Unary or Binary. So they share the properties defined in

Unary or Binary, either has an operand property pointing to Expression or has a

firstOperand property and a secondOperand property. For example, Exists is a unary

pattern and Between is a binary scope. Further restrictions are set for different kinds

of expressions. For example, a scope only accepts operations as its operands.

ConstriantList:. This class is a container for pattern properties/constraints.

4.2 Composite Patterns

As shown in Fig. 3, a composite pattern is the composition of pattern properties using

Boolean logic operators including Not, And, Or, Xor and Imply.

Fig. 3. Composite Pattern Structure

With composite patterns, complex properties can be stated straightforward. For

example, if we want to define a property according to “If the order is fulfilled, the

bank ensures that the payment transfers to AdvantWise”. We may write a composite

pattern connected with the ‘And’ operator:

Customer.GetOrderFulfilled Precedes Bank.Transfer Globally
And
Customer.GetOrderFulfilled LeadsTo Bank.Transfer Globally

(1)

In this situation, both ‘GetOrderFulfilled’ and ‘Transfer’ should occur and must

occur sequentially in the program. This composite pattern is used frequently, so we

add a stereotyped composite pattern: PLeadsTo, to our pattern system.

Another example of complex properties is the first requirement of the example

scenario. This requirement claims an ‘exclusive or’ relation between order

confirmation and rejection. It also demands a precedent occurrence of the “check

order” activity. With composite patterns, we may specify this requirement as follows:

(Customer.ConfirmOrder Exists Globally
Xor Customer.RejectOrder Exists Globally)
And Manufacturer.CheckOrder Precedes Customer.ConfirmOrder
Globally
And Manufacturer.checkOrder Precedes Customer.RejectOrder Globally

(2)

Next, we briefly explain the semantics of composite patterns. A formal semantics

definition can be found in an accompanying technical report [15].

As stated earlier, every elementary pattern property has a corresponding FSA

semantics. We thus define the semantics of a composite pattern property from the

logical composition of FSAs of its component pattern properties. For example, Fig. 4

shows the resultant FSAs of 4 logical compositions between two properties: “P1

exists globally” and “P2 exists globally”. The states are the Cartesian product of the

two property FSAs’ states. The first number in a state label represents the state of the

first property FSA, while the second represents the state of the second property FSA.

The final states of the composite pattern are determined by the logic operator used.

For example, the pairing of one final state ‘And’ one non-final state is a non-final

state, and one final state ‘Xor’ one non-final state is a final state. The final states for

different compositions are also described in Fig. 4.

Fig. 4. Logical Compositions of Two ‘Exists’ Properties

With such definitions, we have proved in [15] a theorem: the language set that can

be accepted by a composite FSA is the composition of the language set of the

component elementary FSAs. For example, if we have a composite pattern ‘pr1 And

pr2’, then Language(pr1 And pr2) = Language(pr1) And Language(pr2). Here, the

‘And’ between two sets Language(pr1) and Language(pr2) is the set-intersection

operator. This theorem proves the correctness of our semantics definition to

composite patterns.

Logic Operator Final States

And 11

Or 01,10,11

Xor 01,10

Imply 00,01,11

4.3 PROPOLS Example

In this subsection, we use PROPOLS to describe the example requirements

introduced in section 2. For easy reading, we first write the pattern properties in a

simple text format in Fig. 5.

In Fig. 5, the first property is for requirement 1. The second, third, and fourth

constraints are for requirement 2. The last property is for requirement 3. These pattern

properties are quite intuitive and self-explanatory.

 Fig. 5. Pattern Properties for the Example Requirements

Constraint List: Hard Credit Rule
1. (See property (2) in section 4.2)
2. Customer.ConfirmOrder PLeadsto

Bank.Deposit Globally
3. Bank.Depoist PLeadsto

Manufacturer.StartOrderProcessing Globally
4. Customer.GetOrderFulfilled PLeadsto

 Bank.Transfer Globally
5. Manufacturer.CheckInventory Precedes

Manufacturer.ScheduleProducing Globally

To showcase the real definition of properties, we present part of the PROPOLS

code for the first property in Fig. 6. A complete version can be found in [15].

Fig. 6. Excerpt of an Example PROPOLS Property Definition

5 Verification of BPEL

In this section, we present an approach to the compliance checking of BPEL

schemas against PROPOLS properties. The presentation starts with a high-level

description of a BPEL schema to implement AdvantWise’s online purchase process in

the aforementioned example scenario, and then explains the verification approach

using the example BPEL schema. A snapshot of our developed verification tool is

also presented.

<And rdf:ID="And_Property">
<secondOprand rdf:resource="#Pre_Canc"/>
<firstOprand rdf:resource="#And_inst_1"/></And>

<Precedes rdf:ID="Pre_Canc">
<scope><Global rdf:ID="Global_Inst"/></scope>
 <firstOprand>
 <Operation rdf:ID="checkOrder">
 <provider rdf:datatype="&XMLSchema;anyURI">

#Manufacturer</provider>
<conceptReference rdf:datatype="&XMLSchema;anyURI">

#CheckOrder</conceptReference>
 </Operation></firstOprand>
<secondOprand rdf:resource="#RejectOrder"/>

</Precedes>
……

5.1 An Example BPEL Schema

Fig. 7 shows the main structure of the BPEL schema as an implementation of the

online purchase process for AdvantWise. This diagram keeps the message exchange

primitives in the actual BPEL schema. It uses black bars to represent the other

participants of the process, including the Customer and the Bank.

Fig. 7. Example BPEL Schema: Main Structure

5.2 Verification Approach

Fig. 8 illustrates our approach to verifying the compliance of BPEL schemas to

PROPOLS properties. The main steps of the verification process are explained below.

Fig. 8. Principle of PROPOLS Verification Approach

Semantic Mapping. First of all, there is a semantic mapping between the operations

defined in PROPOLS and Web service operations. The mapping is based on the

condition that both of these operations refer to the same concept in the domain

ontology. The PROPOLS operations can tell their semantics via the conceptReference

property. There are two typical ways in which one can add semantic annotations to

Web service operations: by using an external annotation file or directly appending

semantic annotations to the WSDL file. In this context, we use the latter approach. As

exemplified in Fig. 9, we extend the Customer Web service’s operation definition

with WSDL-S semantic extension element wssem:modelReference.

<portType name="Customer>
<operation name="confirmNotif"
wssem:modelReference="
http://www.purl.org/onto/operationOnto#ConfirmOrder>
…
<operation name="rejectNotif"
wssem:modelReference="
http://www.purl.org/onto/operationOnto#RejectOrder>

…

Fig. 9. Example Semantic Annotations to Web Service Operations in WSDL

In the above example, the Web service operation confirmNotif and PROPOLS

operation ConfirmOrder refer to the same ontology concept, so we can use

confirmNotif to replace ConfirmOrder in the compliance checking process. A

complete treatment of the mapping between operations can be found in [15].

Verification Process. As shown in Fig. 8, the verification is conducted in 3 steps. (1)

For every pattern property, a semantic equivalent Total and Deterministic FSA

(TDFA) is built. If the property is a composite one, the corresponding TDFA is

constructed by composing the TDFAs of its sub-properties according to the

composition semantics definition in section 4.2. (2) For the BPEL schema, a finite

and deterministic LTS model is generated, from which a TDFA is built by introducing

the set of final states and an error state to collect all the unacceptable events (or

operation invocations) of each state. (3) The compliance of the BPEL schema to the

PROPOLS properties is then checked as a verification problem of whether the

accepting event sequences of the BPEL TDFA are all present in the accepting event

sequence set of the property TDFA. This is done by testing the emptiness of the

intersection of the BPEL TDFA and the complement of the property TDFA. A

detailed explanation of this approach can be found in [15].

Next, we illustrate the verification process using property 1 in Fig. 9. Fig. 10 shows

property 1’s TDFA. Fig. 11 shows the TFDA of our example BPEL schema. This

TFDA was obtained in two steps. First, Foster’s BPEL2LTS tool [9] is used to obtain

a LTS for the BPEL schema. Then, the LTS is transformed to a FSA (See [15] for

detail).

Fig. 10. TDFA of the Example Property

Fig. 11. TDFA of the Example BPEL Schema

After obtaining the complement of the property TDFA, it is intersected with the

BPEL TDFA. It turned out that the resultant FSA has no final state. This means that

the BPEL schema conforms to the example pattern property. A snapshot of the final

result is shown in Fig. 12.

We have implemented a prototype tool for verifying BPEL Schemas against

PROPOLS properties. Fig. 12 is the snapshot of this tool. The left panel contains a list

of properties, the logical operators, and the BPEL schema waiting for verification.

While composing a property and a BPEL schema according to the above-stated

approach, the resultant TDFA is shown in the right panel.

Fig. 12: Snapshot of the Verification Example

Id Event

0 rejectNotif

1 placeOrder

2 checkOrder

3 confirmNotif

4 confirmDeposit

5 fulfilOrder

6 confirmPayment

7 issueInvoice

8 checkOrderReply

9 orderResultFail

10 orderResultOk

6 Related Work

Particularly relevant to the work presented in this paper are two streams of work:

formal verification of BPEL schemas and property specification patterns.

A body of work has been reported in the area of formal property specification and

verification of BPEL schemas. The main differences among them lie in the property

specification language and the formal semantic model for BPEL. In [16], Foster relies

on Finite State Processes (FSPs) to both semantically represent a BPEL schema and

specify the properties. In [17], Stahl maps BPEL schemas into Petri nets and utilises a

verification tool LORA (Low Level Petri net Analyzer) to verify CTL properties. In

[18], the authors map BPEL into Promela, the input language of the model checker

SPIN, and then use SPIN to check LTL properties. The most significant difference

between these approaches and our work is that we focus on a practitioner-oriented

approach to property specification. Compared to their heavy-weighted formal

property specification languages, our pattern-based PROPOLS language is easier to

understand and use. Also, its ontology-based nature helps in establishing a natural

connection between pattern-based properties and the domain knowledge.

The property specification patterns are originally proposed by Dwyer et al. in [6].

Since then they have been applied and extended in many ways. Smith et al. [7]

proposed a specification approach which enables fine-tuning patterns to achieve more

precise meanings, based on a combined use of a “disciplined” natural language and a

FSA template language. For example, six different templates were identified to fine-

tune the response pattern. Gruhn et al. [8] extended the patterns with time for

describing real-time related properties. Paun et al. [19] extended the patterns to deal

with events in a state-based formalism. Furthermore, the patterns are the foundation

for the extensible specification language in the Bandera system [20].

7 Conclusion

In this paper, we proposed a verification approach to BPEL schemas, which employs

an ontology language PROPOLS for the property specification. PROPOLS builds on

and extends Dwyer et al.’s pattern system. Its pattern-based nature enables software

practitioners to write formal behavioral properties more easily. Its logical composite

pattern mechanism allows one to state complex requirements. The ontology encoding

also facilitates the sharing and reuse of PROPOLS constraints.

In the future, we intend to develop a graphical interface for the PROPOLS

language. We also intend to apply the pattern properties in PROPOLS to provide just-

in-time guidance to the BPEL designer during the service composition process.

Acknowledgments. We would like to thank Dr. Howard Foster at Imperial College, London,

for his help in using his tool to translate BPEL schemas to Labeled Transition Systems.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Special Issue on Service Oriented Computing.

Communications of ACM 46 (10) (2003) 24 – 28

2. Alonso, G., Casati, F., Grigori, Kuno H., Machiraju, V.: Web Services Concepts,

Architectures and Applications. Springer-Verlag (2004)

3. Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Liu, C.K., Thatte, S.,

Yendluri, P., Yiu, A.: Web Services Business Process Execution Language Version 2.0

Working Draft. http://www.oasis-open.org/committees/download.php/10347/wsbpel-

specification-draft-120204.htm (2004)

4. BPMI: Business Process Modeling Language. http://www.bpmi.org/ (2002)

5. Clarke, E.M., Moon, I., Powers, G.J., Burch, J.R.: Automatic Verification of Sequential

Control Systems using Temporal Logic. American Institute of Chemical Engineers Journal,

38 (1) (1992) 67 – 75

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property Specification Patterns for Finite-State

Verification. In 2nd Workshop on Formal Methods in Software Practice (1998) 7 - 15,

Clearwater Beach, FL, USA

7. Smith, R.L., Avrunin, G.S., Clarke L.A., Osterweil L.J.: PROPEL: An Approach

Supporting Property Elucidation. In Proc. 24th International Conference on Software

Engineering (2002) 11-21, Orlando, FL, USA

8. Gruhn V. Laue R.: Specification Patterns for Time-Related Properties. In 12th International

Symposium on Temporal Representation and Reasoning (2005) 189 - 191, Burlington,

Vermont, USA

9. Foster, H.: LTSA WS-Engineering. http://www.doc.ic.ac.uk/ltsa/bpel4ws/ (2006)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in Property Specifications for Finite

state Verification. In Proc. International Conference on Software Engineering (1999) 411-

420, Los Angeles, CA, USA

11. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: A System of Specification Patterns.

http://www.cis.ksu.edu/santos/spec-patterns, (1997)

12. Jin, Y., Han, J.: Consistency and Interoperability Checking for Component Interaction

Rules. In Proc. 12th Asia-Pacific Software Engineering Conference (2005), Taipei, Taiwan

13. Li, Z., Han, J., Jin, Y.: Pattern-Based Specification and Validation of Web Services

Interaction Properties. In Proc. 3rd International Conference on Service Oriented

Computing (2005) Amsterdam, Netherland

14. OntoViz Tab: Visualizing Protégé Ontologies

http://protege.stanford.edu/plugins/ontoviz/ontoviz.html (2005)

15. Yu, J., Phan, M.T., Han, J., Jin, Y.: Pattern based Property Specification and Verification

for Service Composition. Technical Report SUT.CeCSES-TR010. CeCSES, Swinburne

University of Technology, http://www.it.swin.edu.au/centres/cecses/trs.htm (2006)

16. Foster, H.: A Rigorous Approach to Engineering Web Services Compositions. PhD thesis,

Imperial College London. http://www.doc.ict.ac.uk/~hf1 (2006)

17. Stahl C.: A Petri Net Semantics for BPEL. Informatik-Berichte 188, Humboldt-Universitat

zu Berlin, June 2005 (2005)

18. Fu, X., Bultan T., Su J.: Analysis of Interacting BPEL Web Services. In Proc. 13th World

Wide Web Conference (2004) 621-630, New York, NY, USA

19. Paun, D.O., Chechik, M: Events in Linear-Time Properties. In Proc. 4th International

Conference on Requirements Engineering (1999) Limerick, Ireland

20. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach', S., Pasareanu, C.S., Zheng, R., Zheng, H:

Bandera: Extracting finite-state models from Java source code. In Proc. 22nd International

Conference on Software Engineering (2000) 439-448, Limerick, Irelan

