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Abstract. Service composition is becoming the dominant paradigm for 

developing Web service applications. It is important to ensure that a service 

composition complies with the requirements for the application. A rigorous 

compliance checking approach usually needs the requirements being specified 

in property specification formalisms such as temporal logics, which are difficult 

for ordinary software practitioners to comprehend. In this paper, we propose a 

property pattern based specification language, named PROPOLS, and use it to 

verify BPEL service composition schemas. PROPOLS is easy to understand 

and use, yet is formally based. It builds on Dwyer et al.’s property pattern 

system and extends it with the logical composition of patterns to accommodate 

the specification of complex requirements. PROPOLS is encoded in an 

ontology language, OWL, to facilitate the sharing and reuse of domain 

knowledge. A Finite State Automata based framework for verifying BPEL 

schemas against PROPOLS properties is also discussed. 

1   Introduction 

Web service composition is emerging as a promising technology for the effective 

integration of applications across globally distributed organizations [1, 2]. When 

encapsulating modular business functions as standard Web services, cross-

organizational business processes can be built with a service composition language 

like BPEL [3] or BPML [4]. 

It is important to ensure the behavioral compliance between a service composition 

application and the requirements. Unexpected application behaviors may not only 

lead to mission failure, but also may bring negative impact on all the participants of 

this process. Model checking [5] is a formal approach to software behavioral 

compliance checking. In this approach, a software application is abstracted as a 

formal model like Labeled Transition Systems (LTS), Finite State Automata (FSA), 

Petri nets, or process algebra. The behavioral requirements are specified as properties 

in formalisms such as Linear Temporal Logic (LTL), Computation Tree Logic (CTL), 

or Quantified Regular Expressions (QRE). Then the formal model can be verified 

against the specified requirements/properties through exhaustive state space 



exploration. A serious problem, however, prevents the wide adoption of this approach. 

That is, the formal properties are surprisingly difficult to write for practitioners, who 

usually don’t have solid mathematical backgrounds [6, 7]. 

In this paper, we present a lightweight specification language called PROPOLS 

(Property Specification Pattern Ontology Language for Service Composition), and an 

associated approach to the verification of BPEL schemas. PROPOLS is an OWL-

based high-level pattern language for specifying the behavioral properties of service 

composition applications. PROPOLS is based on Dwyer et al.’s property patterns [6], 

which are high-level abstractions of frequently used temporal logic formulae. The 

property patterns enable people who are not experts in temporal logics to read and 

write formal specifications with ease and thus make model checking tools more 

accessible to common software practitioners [8]. Although it is claimed in [6] that 

patterns can be nested, no further work has been done on how to define composite 

patterns and what are their semantics. PROPOLS refines/extends the original pattern 

system in [6] by introducing the logical composition of patterns. This mechanism 

enables the definition of complex requirements in terms of property patterns, which is 

previously difficult or even impossible. PROPOLS uses the Web Ontology Language 

(OWL) as its base language. This makes PROPOLS properties sharable and reusable 

within/across application domains. 

In addition to the PROPOLS language, we present a verification framework for 

checking the compliance of BPEL schemas against PROPOLS properties. The key 

techniques used include representing the semantics of PROPOLS properties as FSAs, 

representing the semantics of a BPEL schema as a LTS/FSA using Foster’s 

BPEL2LTS tool [9], and checking the language inclusion between these two FSAs. 

The verification approach is illustrated using a non-trivial example. 

This paper is structured as follows. In the next section, a motivating example 

scenario is presented. Section 3 gives a brief introduction to the original property 

specification patterns. Section 4 presents PROPOLS, including its syntax and 

semantics. Section 5 introduces the BPEL verification framework and illustrates the 

verification approach based on the example scenario. Finally, we discuss the related 

work in section 6 and conclude the paper in section 7. 

2   A Motivating Scenario 

Let’s assume a computer manufacturing company AdvantWise is to provide an online 

purchasing service. The key requirements to this service are sketched as follows: 

1) Customers can place purchase orders online. Any order should be checked before 

being processed. For an invalid order, the customer will get a rejection 

notification. For a valid one, the customer will get a confirmation. 

2) The transactions between customers and AdvantWise follow a hard credit rule. 

That is, on the one hand, the customer pays to AdvantWise only when she has 

received the ordered products. On the other hand, AdvantWise processes the 

order only when it is confirmed that the customer will pay if the order is fulfilled. 

For this to be possible, a third party, bank, is introduced. To let AdvantWise start 

processing order, the customer must deposit the payment to the bank first. Then 



the bank will notify AdvantWise that the payment for the order has been already 

kept in the bank. Anytime when the order is canceled, the payment will be 

refunded by the bank. If the order is fulfilled, the bank ensures that the payment 

is transferred to AdvantWise. 

3) To fulfill an order, AdvantWise first checks its inventory. If there are enough 

products in the inventory, the products of the ordered quantity are packaged for 

shipping. If not, AdvantWise will initiate an emergency production schedule. 

Clearly, the above-stated requirements express certain business constraints that the 

system implementation must follow. On the one hand, it is not easy to translate the 

embedded behavioral constraints into temporal logics in a straightforward manner. On 

the other hand, Dwyler’s patterns are not expressive enough to state all the constraints, 

for example, the mutual exclusion between rejection and confirmation. After 

introducing PROPOLS in section 4, we will formulate all these requirements in 

PROPOLS, against which the BPEL service composition being designed in section 5 

will be checked. 

3   Property Specification Patterns 

Property specification patterns were first proposed by Dwyer et al in [6]. These 

patterns include a set of commonly occurring high-level specification abstractions for 

formalisms like LTL, CTL or QRE. They enable people who are not experts in such 

formalisms to read and write formal specifications. According to [10], 92% of 555 

property specifications collected from different sources matched one of the patterns. 

A pattern property specification consists of a pattern and a scope. The pattern 

specifies what must occur and the scope specifies when the pattern must hold.  

Patterns are classified into occurrence patterns and order patterns. We briefly 

describe the meaning of the important patterns below (the symbol P or Q represents a 

given state/event). Details of these patterns can be found in [11].  

� Absence: P does not occur within a scope. 

� Universality: P occurs throughout a scope. 

� Existence: P must occur within a scope. 

� Bounded Existence: P must occur at least/exactly/at most k times within a scope. 

� Precedence: P must always be preceded by Q within a scope. 

� Response: P must always be followed by Q within a scope. 

A scope defines a starting and an ending state/event for a pattern. There are five 

basic kinds of scopes:  

� Globally: the pattern must hold during the entire system execution. 

� Before: the pattern must hold up to the first occurrence of a given P. 

� After: the pattern must hold after the first occurrence of a given P. 

� Between…And: the pattern must hold from an occurrence of a given P to an 

occurrence of a given Q. 

� After…Until: the same as "between…and", but the pattern must hold even if Q 

never occurs. 

The semantics of pattern properties may be given in LTL, CTL, QRE, or FSA [6, 

7, 12, 13]. Fig. 1 illustrates the FSA semantics by three pattern properties. There, the 



symbol ‘O’ denotes any other state/event than P and Q. Fig. 1(a) indicates that, before 

P occurs, an occurrence of Q is not accepted by the FSA. Fig. 1(b) states that if Q has 

occurred, an occurrence of P is necessary to drive the FSA to a final state. Finally, Fig. 

1(c) says that only the occurrence of P can make the FSA reach a final state. 

 
Fig. 1. FSA Semantics of Example Pattern Properties 

4   The PROPOLS Language 

In this section, we first illustrate the structure and main components of the PROPOLS 

language. We then explain the syntax and semantics of the composite pattern, which 

are refinements/extensions to the original pattern system. A composite pattern is built 

by connecting pattern properties using logic operators. The main benefit of the 

composite pattern mechanism lies in that it enables the specification of complex 

requirements. Finally, the PROPOLS properties for the example scenario are given. 

4.1   Language Structure 

We designed PROPOLS as an ontology language for two purposes: First, ontology 

can be used to define standard terminology for the pattern system. Second, 

practitioners like business experts and system analysts can use concepts from existing 

domain ontologies to define pattern properties at a high level of abstraction. The 

benefits include: The pattern properties themselves are also become part of the shared 

formal domain knowledge, so they can be reused in a wide scope, and off-the-shelf 

semantic Web techniques can be used to map properties to related Web services 

automatically. At present, OWL is the most widely used Web ontology language. So 

we choose OWL as the base language of PROPOLS. 

Fig. 2 shows a graphical overview of the PROPOLS ontology. It is generated from 

Ontoviz [14], an ontology visualization plug-in for an OWL editor tool Protégé. Its 

major elements are explained below. 

OrderPattern: This class defines the set of order patterns we discussed in section 3. 

We use a more natural name LeadsTo to replace the original name RespondsTo. Here, 

P LeadsTo Q is the same as Q RespondsTo P. 

OccurrencePattern: This class defines the set of occurrence patterns we discussed in 

section 3. 

Scope: As discussed in section 3, every elementary pattern will be associated with a 

scope coming from globally, before, after, between…and or after…until. 

         
(a) P precedes Q globally     (b) P responds to Q globally    (c) P exists globally 



 

Fig. 2. PROPOLS Ontology 

Operation: This is the class for service operations. An operation is considered as an 

event in the pattern properties. It has a provider property linking to its provider and a 

conceptReference property linking to the corresponding concept in some ontology. 

Later, the conceptReference can be used to semantically map an event in pattern 

properties to a Web service operation and vice versa. 

Expression, Unary and Binary: Expression is a general class for patterns and 

operations. For the succinctness of the PROPOLS ontology, all the patterns and 

scopes are the subclasses of Unary or Binary. So they share the properties defined in 

Unary or Binary, either has an operand property pointing to Expression or has a 

firstOperand property and a secondOperand property. For example, Exists is a unary 

pattern and Between is a binary scope. Further restrictions are set for different kinds 

of expressions. For example, a scope only accepts operations as its operands. 

ConstriantList:. This class is a container for pattern properties/constraints. 

4.2   Composite Patterns 

As shown in Fig. 3, a composite pattern is the composition of pattern properties using 

Boolean logic operators including Not, And, Or, Xor and Imply. 

   

Fig. 3. Composite Pattern Structure 

With composite patterns, complex properties can be stated straightforward. For 

example, if we want to define a property according to “If the order is fulfilled, the 

bank ensures that the payment transfers to AdvantWise”. We may write a composite 

pattern connected with the ‘And’ operator: 



Customer.GetOrderFulfilled Precedes Bank.Transfer Globally 
And 
Customer.GetOrderFulfilled LeadsTo Bank.Transfer Globally 

(1) 

In this situation, both ‘GetOrderFulfilled’ and ‘Transfer’ should occur and must 

occur sequentially in the program. This composite pattern is used frequently, so we 

add a stereotyped composite pattern: PLeadsTo, to our pattern system.  

Another example of complex properties is the first requirement of the example 

scenario. This requirement claims an ‘exclusive or’ relation between order 

confirmation and rejection. It also demands a precedent occurrence of the “check 

order” activity. With composite patterns, we may specify this requirement as follows: 

(Customer.ConfirmOrder Exists Globally 
Xor Customer.RejectOrder Exists Globally) 
And Manufacturer.CheckOrder Precedes Customer.ConfirmOrder 
Globally 
And Manufacturer.checkOrder Precedes Customer.RejectOrder Globally 

 

(2) 

Next, we briefly explain the semantics of composite patterns. A formal semantics 

definition can be found in an accompanying technical report [15]. 

As stated earlier, every elementary pattern property has a corresponding FSA 

semantics. We thus define the semantics of a composite pattern property from the 

logical composition of FSAs of its component pattern properties. For example, Fig. 4 

shows the resultant FSAs of 4 logical compositions between two properties: “P1 

exists globally” and “P2 exists globally”. The states are the Cartesian product of the 

two property FSAs’ states. The first number in a state label represents the state of the 

first property FSA, while the second represents the state of the second property FSA. 

The final states of the composite pattern are determined by the logic operator used. 

For example, the pairing of one final state ‘And’ one non-final state is a non-final 

state, and one final state ‘Xor’ one non-final state is a final state. The final states for 

different compositions are also described in Fig. 4. 

 

Fig. 4. Logical Compositions of Two ‘Exists’ Properties 

With such definitions, we have proved in [15] a theorem: the language set that can 

be accepted by a composite FSA is the composition of the language set of the 

component elementary FSAs. For example, if we have a composite pattern ‘pr1 And 

pr2’, then Language(pr1 And pr2) = Language(pr1) And Language(pr2). Here, the 

‘And’ between two sets Language(pr1) and Language(pr2) is the set-intersection 

operator. This theorem proves the correctness of our semantics definition to 

composite patterns. 

 

 
Logic Operator Final States 

And  11 

Or 01,10,11 

Xor 01,10 

Imply 00,01,11 



4.3   PROPOLS Example 

In this subsection, we use PROPOLS to describe the example requirements 

introduced in section 2. For easy reading, we first write the pattern properties in a 

simple text format in Fig. 5. 

In Fig. 5, the first property is for requirement 1. The second, third, and fourth 

constraints are for requirement 2. The last property is for requirement 3. These pattern 

properties are quite intuitive and self-explanatory. 
 

 Fig. 5. Pattern Properties for the Example Requirements 

Constraint List: Hard Credit Rule 
1. (See property (2) in section 4.2) 
2. Customer.ConfirmOrder PLeadsto 

Bank.Deposit Globally 
3. Bank.Depoist PLeadsto  

Manufacturer.StartOrderProcessing Globally 
4. Customer.GetOrderFulfilled PLeadsto 

  Bank.Transfer Globally 
5. Manufacturer.CheckInventory Precedes 

Manufacturer.ScheduleProducing Globally 

To showcase the real definition of properties, we present part of the PROPOLS 

code for the first property in Fig. 6. A complete version can be found in [15]. 

Fig. 6. Excerpt of an Example PROPOLS Property Definition 

5   Verification of BPEL 

In this section, we present an approach to the compliance checking of BPEL 

schemas against PROPOLS properties. The presentation starts with a high-level 

description of a BPEL schema to implement AdvantWise’s online purchase process in 

the aforementioned example scenario, and then explains the verification approach 

using the example BPEL schema. A snapshot of our developed verification tool is 

also presented. 

<And rdf:ID="And_Property"> 
<secondOprand rdf:resource="#Pre_Canc"/> 
<firstOprand rdf:resource="#And_inst_1"/></And>  

<Precedes rdf:ID="Pre_Canc"> 
<scope><Global rdf:ID="Global_Inst"/></scope> 
  <firstOprand> 
     <Operation rdf:ID="checkOrder"> 
      <provider rdf:datatype="&XMLSchema;anyURI"> 

#Manufacturer</provider> 
<conceptReference rdf:datatype="&XMLSchema;anyURI"> 

#CheckOrder</conceptReference> 
     </Operation></firstOprand> 
<secondOprand rdf:resource="#RejectOrder"/> 

</Precedes> 
…… 



5.1   An Example BPEL Schema 

Fig. 7 shows the main structure of the BPEL schema as an implementation of the 

online purchase process for AdvantWise. This diagram keeps the message exchange 

primitives in the actual BPEL schema. It uses black bars to represent the other 

participants of the process, including the Customer and the Bank. 

 

Fig. 7. Example BPEL Schema: Main Structure 

5.2   Verification Approach 

Fig. 8 illustrates our approach to verifying the compliance of BPEL schemas to 

PROPOLS properties. The main steps of the verification process are explained below. 

 

Fig. 8. Principle of PROPOLS Verification Approach 

Semantic Mapping. First of all, there is a semantic mapping between the operations 

defined in PROPOLS and Web service operations. The mapping is based on the 

condition that both of these operations refer to the same concept in the domain 

ontology. The PROPOLS operations can tell their semantics via the conceptReference 

property. There are two typical ways in which one can add semantic annotations to 

Web service operations: by using an external annotation file or directly appending 



semantic annotations to the WSDL file. In this context, we use the latter approach. As 

exemplified in Fig. 9, we extend the Customer Web service’s operation definition 

with WSDL-S semantic extension element wssem:modelReference. 

<portType name="Customer> 
<operation name="confirmNotif" 
wssem:modelReference=" 
http://www.purl.org/onto/operationOnto#ConfirmOrder> 
… 
<operation name="rejectNotif" 
wssem:modelReference=" 
http://www.purl.org/onto/operationOnto#RejectOrder> 

… 

Fig. 9. Example Semantic Annotations to Web Service Operations in WSDL 

In the above example, the Web service operation confirmNotif and PROPOLS 

operation ConfirmOrder refer to the same ontology concept, so we can use 

confirmNotif to replace ConfirmOrder in the compliance checking process. A 

complete treatment of the mapping between operations can be found in [15]. 

Verification Process. As shown in Fig. 8, the verification is conducted in 3 steps. (1) 

For every pattern property, a semantic equivalent Total and Deterministic FSA 

(TDFA) is built. If the property is a composite one, the corresponding TDFA is 

constructed by composing the TDFAs of its sub-properties according to the 

composition semantics definition in section 4.2. (2) For the BPEL schema, a finite 

and deterministic LTS model is generated, from which a TDFA is built by introducing 

the set of final states and an error state to collect all the unacceptable events (or 

operation invocations) of each state. (3) The compliance of the BPEL schema to the 

PROPOLS properties is then checked as a verification problem of whether the 

accepting event sequences of the BPEL TDFA are all present in the accepting event 

sequence set of the property TDFA. This is done by testing the emptiness of the 

intersection of the BPEL TDFA and the complement of the property TDFA. A 

detailed explanation of this approach can be found in [15].  

Next, we illustrate the verification process using property 1 in Fig. 9. Fig. 10 shows 

property 1’s TDFA. Fig. 11 shows the TFDA of our example BPEL schema. This 

TFDA was obtained in two steps. First, Foster’s BPEL2LTS tool [9] is used to obtain 

a LTS for the BPEL schema. Then, the LTS is transformed to a FSA (See [15] for 

detail). 

 

Fig. 10. TDFA of the Example Property 



 

 
   

Fig. 11. TDFA of the Example BPEL Schema 

After obtaining the complement of the property TDFA, it is intersected with the 

BPEL TDFA. It turned out that the resultant FSA has no final state. This means that 

the BPEL schema conforms to the example pattern property. A snapshot of the final 

result is shown in Fig. 12. 

 

We have implemented a prototype tool for verifying BPEL Schemas against 

PROPOLS properties. Fig. 12 is the snapshot of this tool. The left panel contains a list 

of properties, the logical operators, and the BPEL schema waiting for verification. 

While composing a property and a BPEL schema according to the above-stated 

approach, the resultant TDFA is shown in the right panel. 

 

Fig. 12: Snapshot of the Verification Example 

Id Event 

0 rejectNotif 

1 placeOrder 

2 checkOrder 

3 confirmNotif 

4 confirmDeposit 

5 fulfilOrder 

6 confirmPayment 

7 issueInvoice 

8 checkOrderReply 

9 orderResultFail 

10 orderResultOk 



6   Related Work 

Particularly relevant to the work presented in this paper are two streams of work: 

formal verification of BPEL schemas and property specification patterns. 

A body of work has been reported in the area of formal property specification and 

verification of BPEL schemas. The main differences among them lie in the property 

specification language and the formal semantic model for BPEL. In [16], Foster relies 

on Finite State Processes (FSPs) to both semantically represent a BPEL schema and 

specify the properties. In [17], Stahl maps BPEL schemas into Petri nets and utilises a 

verification tool LORA (Low Level Petri net Analyzer) to verify CTL properties. In 

[18], the authors map BPEL into Promela, the input language of the model checker 

SPIN, and then use SPIN to check LTL properties. The most significant difference 

between these approaches and our work is that we focus on a practitioner-oriented 

approach to property specification. Compared to their heavy-weighted formal 

property specification languages, our pattern-based PROPOLS language is easier to 

understand and use. Also, its ontology-based nature helps in establishing a natural 

connection between pattern-based properties and the domain knowledge. 

The property specification patterns are originally proposed by Dwyer et al. in [6]. 

Since then they have been applied and extended in many ways. Smith et al. [7] 

proposed a specification approach which enables fine-tuning patterns to achieve more 

precise meanings, based on a combined use of a “disciplined” natural language and a 

FSA template language. For example, six different templates were identified to fine-

tune the response pattern. Gruhn et al. [8] extended the patterns with time for 

describing real-time related properties. Paun et al. [19] extended the patterns to deal 

with events in a state-based formalism. Furthermore, the patterns are the foundation 

for the extensible specification language in the Bandera system [20]. 

7   Conclusion 

In this paper, we proposed a verification approach to BPEL schemas, which employs 

an ontology language PROPOLS for the property specification. PROPOLS builds on 

and extends Dwyer et al.’s pattern system. Its pattern-based nature enables software 

practitioners to write formal behavioral properties more easily. Its logical composite 

pattern mechanism allows one to state complex requirements. The ontology encoding 

also facilitates the sharing and reuse of PROPOLS constraints. 

In the future, we intend to develop a graphical interface for the PROPOLS 

language. We also intend to apply the pattern properties in PROPOLS to provide just-

in-time guidance to the BPEL designer during the service composition process. 
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